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1 Introduction

A lot of todays embedded design contain an ARM
core. They suit a variety of applications, due to of-
fering different families ranging from embedded, real-
time to application cores designed for running a full-
fledged OS. However, they require a license to use.
This is a hard stop for any hobbyist or small com-
pany to deploy such cores. Writing and maintaining
your own Instruction Set Architecture (ISA) is also
not an option. However, they are open ISAs gaining
traction [9] and ready to be used.

RISC-V is an example. It can be used and ex-
tended to best suit one’s individual needs. It is also
supported by GCC. The base instruction set (RV32I)
is kept to a minimum of only 47 instructions. These
make a viable compile target. The instructions are
fixed-length, all 32-bit wide [1]. These simplifications
reduce the size of the implementation and make it
quite portable, in particular, small FPGA implement-
ations are possible.

Base ISA provides 32 general-purpose registers, but
an RV32E variant for resource-constrained environ-
ments, in which only half of the registers are suppor-
ted, is available (as of 2024 it is a draft extension).
It can further reduce the core size. Integer multiplic-
ation and divisions are supported via ”M” extension.
Code size can be reduced by 25-30% by implementing
”C” extension with 16-bit dense instruction encoding.

This article focuses on evaluating existing RISC-V
implementations which can be run on small, afford-
able, low-power chip iCE40UP5K [10]. RV32I base
32-bit ISA is the main point of interest, however,
RV32IM is also considered.

The structure of this study is as follows. In sec-
tion 2.2 a list of suitable implementation is defined.
Section 4 describes testing methodology and results.

2 State of the Art

2.1 Articles

Ever since RISC-V was described in [2], it is gain-
ing more and more interest from academia and the
industry. In [3] also several implementations were
surveyed. It defined 3 use cases for large, medium,
and small cores. Authors agreed that RISC-V can be
tailored to ones needs.

In [4] a classic closed-source one-size-fits-all ap-
proach is contrasted with revolutionary open ap-
proach. It focuses on the possibility to create a
small, tailor-made, and power-efficient cores. Re-
portedly, industry is also implementing more and
more of RISC-V cores in their designs. Also, se-
curity and transparency issues were raised. In pro-
prietary cores there is no way of ensuring that no
hardware-level backdoor was installed by the manu-
facturer. Security extensions can be employed to fit
specific needs. Overall, authors are optimistic about
bright future RISC-V will bring.

A lot of effort is being put in custom extensions.
In [5] a DSP coprocessor was implemented. It adds
hardware support for several commonly-used opera-
tions in FFT like complex number dot products and
multiplications. Authors modified liquid-dsp lib-
rary to use the new instructions. Hamming coding
provided up to 70% clock cycle reduction, and 45%-
60% for FFT and digital filters.

In [6], a software-defined radio (SDR) concept was
approached. Multi-chip designs are cumbersome and
not energy efficient. Also, dedicated chips are not
flexible. With SDR implemented in FPGA, dynamic
reconfiguration is possible. The article presents a
DSP for SDR coprocessor with packed SIMD instruc-
tions for 8/16-bit complex numbers. All of this is used
for software FSK demodulation (used in Bluetooth),
LoRa preamble detection, and FFT. For LoRa, 45%
cycle count reduction was achieved with constant en-
ergy usage.

Summing up, a lot of progress is being actively
made in RISC-V field. Surveys, articles, and custom
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Table 1: Comparison of RISC-V implementations available on the Internet

Repo Project Language ISA Variant iCE40 LUT
DMIPS
per MHz
claimed

[12] PicoRV32 Verilog RV32I default 1984 (38%)

RV32IM mul+div 3422 (65%)

RV32IM mul+div fast 6486 (123%) 0.305

[13] VexRiscV SpinalHDL RV32I small 1071 (20%) 0.520

RV32I small and productive 1322 (25%) 0.820

RV32IM full no mmu no cache 5838 (111%) 1.210

RV32IM
full no mmu no cache
simple mul

5828 (110%)

[14] FemtoRV32 Verilog RV32I quark bicycle 1175 (22%)

FemtoRV32 Verilog RV32IM electron 5102 (97%)

extensions bring hope to wide adoption and royalty-
free computing.

2.2 Open-source RISC-V cores with
open-source tools

There is a number of RISC-V implementations avail-
able on the Internet. To fully embrace the freedom
RISC-V provides, only open-source were considered.
No licenses are required to use this software. They
can prove useful in devices where on-site reconfigur-
ation is necessary.
Unfortunately, open tools have limitations.

Yosys[11], a synthesis tool, officially only supports
Verilog-2005 input. Some SystemVerilog extensions
are included, but not enough to fully support a CPU
written in it. Several implementations were rejected
due to this. Only Verilog or compilable to Verilog
implementations are considered here.
Surveyed implementation were summarized in

Table 1.

2.2.1 PicoRV32

A simple core named PicoRV32 [12] is a good start-
ing point. This implementation was optimized for
maximum frequency and minimum LUT usage. Thus
it can be integrated with high-frequency circuitry
without separate clock domain, or used with slower
hardware without much timing penalties.
Default CPU variant supports RV32I base instruc-

tion set. Configuration options additionally support

synthesizing RV32E, RV32IM and RV32IMC cores.
Also clock cycle and instruction counter are option-
ally available. They are useful for calculating clocks
per instruction metric used in section 4. IRQ support
is available.

Custom Pico Co-Processor Interface (PCPI) is
available. The extensions use this bus internally.
This can prove useful when one would like to extend
the core’s functionality. A single data/instruction
bus is exposed with custom interface. Additionally,
AXI4-Lite [15] and Wishbone [16] are supported.

Authors claim 0.305 DMIPS/MHz Dhrystone
benchmark score and 5.232 clocks per instruction
(CPI) with RV32IM core with fast multiplication en-
abled.

2.2.2 VexRiscV

Secondly, a more sophisticated implementation was
considered. It is written in SpinalHDL, a higher-level
language than Verilog. However, it compiles to it and
can be used within existing designs.

Modularity and parametrization enables the user
to create a custom-built RISC-V CPU. Small variants
support RV32I. Provided plug-ins provide ”M”, ”C”
extensions, as well as ”A” (atomic instructions), ”F”
(single-precision floats) and ”D” (double-precision
floats). Separate data/instruction buses are exposed.
AXI4-Lite, Wishbone, Avalon [17] bridges are avail-
able.

Authors claim 0.82 DMIPS/MHz Dhrystone
benchmark score with small and productive variant
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Figure 1: Test environment used

of the core (RV32I). It is a surprisingly high score,
provided that it uses 33% less LUT than PicoRV32,
which maxes out at 0.305 DMIPS/MHz on it’s fastest
variant.

3 Methodology

The cores were run in a environment described in
Section 4. Author-provided SoC were not used.
A Dhrystone benchmark, based on the one found in
PicoRV32 repository, was used. This benchmark was
introduced in [7] and by performing statistical ana-
lysis, most used operands were determined. They
were summarized in Table 2.
Three sets of metrics were used to compare the

cores, first being the core LUT usage. It is really
important to keep this under control on tiny FPGA
chips. Secondly, performance per MHz was con-
sidered. It is a good metric for comparing cores
outside of their SoCs. However, implementing ex-
tensions in energy-efficient (slow) FPGA chips brings
nontrivial timing penalties. A max frequency was
taken from the place-and-route tool and then multi-
plied by Dhrystone MIPS per MHz measured on-chip.
This gives a consistent view of what we can expect
from an implementation crunching real numbers.

4 Experiments

Test environment schematic [18] is shown in Figure 1.
This design doesn’t use any external memories. How-
ever, device requires code downloads, thus the UART
debug unit was created. Through muxes (1) and (2)
it can read/write all types of memory. Additionally,

Table 2: Dhrystone operations summary

Category Type Usage

Statements Assignment 53%

Control 32%

Call 15%

Operators Arithmetic 52.9%

Comparison 39.2%

Logic 7.8%

Operand types Integer 54.4%

Character 19.5%

Enumeration 12.4%

Boolean 4.6%

Pointer 5.0%

String 2.5%

Array 0.8%

Record 0.8%

Operands locality Local 48.5%

Global 7.9%

Parameters 18.7%

Function results 2.1%

Constants 22.8%
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the debug unit supports clock stopping and resetting
the core.

Mux (3) is only present when core’s implementa-
tion provides separate instruction/data bus. Multi-
plexing them together brings a performance penalty,
but it simplifies the design.

FPGA chip provides 4 blocks of single-port
memory, each 256kbit large. This memory was organ-
ized into 32-bit wide blocks, which form the RAM and
ROM of the system. Also memory-mapped I/O space
was reserved. Currently it features 3 PWM blocks
driving the on-board RGB LED, 1 UART block for
core’s text communication and a time source register
incrementing once per 1µs.

PC communication is handled by the RP2040 avail-
able on the board. By default, it provides one UART
interface binded with ttyACM1. This one is used
for debug unit communication. However, a second
UART was required to receive messages printed by
the core itself. Due to the open-source nature of
the firmware, it was modified to provide additional
UART via ttyACM2 interface.

Interfacing with the hardware is done via a Python
script [19]. It provides a read/write+verify/reset
commands. With this design it is required to use
--d32 flag. A upload.sh script is provided for con-
venience. It takes one argument, the hex file to up-
load. Also it resets the core afterwards.

Test were performed using pico-ice board [20]. It
can be seen in Figure 2. Saleae-compatible scope was
used. It fits nicely into the PMOD connectors and
provides a way to test Verilog code on real FPGA, in
addition to simulations.

Figure 2: Testbed used in experiments

4.1 Program details

Dhrystone benchmark loop was not modified in
any way. It was adjusted to use correct time-
source and calculate final results in fixed point
representation to reduce code size. The imple-
mentations of malloc, strcpy, strcmp were also
sourced from PicoRV32. Code was compiled with
-O3 -ffreestanding -nostdlib for RV32I cores
with additional -mabi=ilp32 -march=rv32im for
RV32IM cores. Linking was performed using custom
linker script. _start routine initialized stack, zeroed
bss section and performed a jump to main. Resulting
.hex files were uploaded to the device via upload.sh

and output was captured from ttyACM2. All source
code and compilation infrastructure can be found in
dhrystone directory of [18].

4.2 Core details

PicoRV32 default variant was instantiated with no
Verilog parameters provided, except for enabling
cycle and instruction counters.

VexRiscV required a couple of small modifications.
Apart from adding performance counters as above,
cmdForkPersistence option was enabled. It ensures
bus request doesn’t change in the middle of trans-
actions. Some additional hardware is required, but
it makes the core’s bus much more predictable and
easier to use.

4.3 Results

Achieved metrics were presented in Table 3. LUT
usages don’t generally correspond with numbers seen
previously. It’s due to additional hardware needed
for benchmarking and synthesis optimizations.

PicoRV32 default instance actually got better res-
ults that the biggest one advertised by authors. The
only other variant that fitted under 5K LUT is the
simple multiplication and division variant conform-
ing to RV32IM. It enlarged CPU by over 68% and
brought only 9% performance gain per MHz, over-
ally (at maximum frequency) gaining only 6.8%.

VexRiscV turned out better than PicoRV32 core.
Pipeline implementation is really size-efficient. Small
variant is 21% smaller than default PicoRV32, yet it
achieved 45% higher per MHz Dhrystone score. Un-
fortunately, max frequency was lowered. At F_MAX,
the VexRiscV core is only 6.8% better. Small-and-
productive variant with as little as 5.5% LUT usage
increase, performs 27% better per MHz and 24% at
F_MAX. Full variant didn’t fit into the FPGA. Only
extension providing ”M” extension was an iterative
plug-in, which got 4.3% better per MHz results, but
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Table 3: Comparison of benchmark results for different RISC-V implementations

Core Variant
iCE40 LUT
CPU only

CPI
DMIPS
per MHz

F MAX

MHz
DMIPS
max

PicoRV32 default + counters 2017 (38%) 5.220 0.348 27.28 9.49

mul+div + counters 3399 (64%) 5.282 0.380 26.69 10.14

VexRiscV small (custom) 1588 (30%) 3.597 0.505 20.08 10.14

small and productive (custom) 1676 (32%) 2.840 0.640 19.71 12.61

small and productive (custom)
with MulDivIterativePlugin

2369 (45%) 3.010 0.668 17.91 11.96

RP2040 ARM Cortex M0+ 1.426 125 178

due to lower max frequency worsened it’s overall per-
formance by 5.1%. It also takes 41% more space.
Overall, VexRiscV small-and-productive variant

offers a sweet spot for LUT, performance per MHz,
and F_MAX. It is half as performant per MHz as ARM
Cortex M0+ present in RP2040 on board.

5 Future work

Some results provided better performance per MHz
but lowered maximum CPU frequency could run.
This resulted in worse maximum speed, but it’s not
always the goal. Power consumption for the cores
can also be an important aspect. However, it was not
done in this work, mainly because it requires board
modifications.
A lot of interest is being put in expanding RISC-

V with custom extensions. Cores tested in this work
offer either Verilog peripheral interface or SpinalHDL
module system. Next step could be to design and
implement custom ISA extension. Possible use cases
include hardware signal processing, which may enable
fast sensory data acquisition for applications like [8].
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